FAW arrival, spread and emerging impacts at household level

EU FAW IPM project overview

Subramanian Sevgan
Principal Scientist, Plant health theme
On behalf of the FAW team, icipe and partners

www.icipe.org
Spodoptera frugiperda (J.E. Smith, 1797)

- Nearctic and Neotropical in origin, identified first in 1797 in Georgia, USA

- Phaleana frugiperda (until 1852)

- Laphygma frugiperda (until 1958)
 - Commonly referred as grass worm

- First report on migratory behavior from Florida and Texas (Lubingill, 1928)

- Named as Fall Armyworm, Spodoptera frugiperda in 1958
Host range and economic importance

- **Host Range**, over 100 plant spp.
- Montezano et al. (2018) – 353 host plants
- **Cereals**: maize, sorghum, wheat
- **Fodder grasses**: Napier grass
- **Vegetables**: Kales, Cabbages, pulses

FAW is a threat to:
- Food security
- Maize seed sector
- Export trade
- Livestock feed industry
Global invasion of Fall armyworm

Average yield loss to maize: 10.4 – 45%

Economic Impact : US$ 1,088 and US$ 4,661 (CABI, 2018)
Migratory pattern in the Neotropics

- Overwintering populations in Texas and Florida
- Annual migration northwards
- Texas population widespread in South America
- Migratory behavior in South America not widely studied, expected to be endemic
- Adults can migrate over 2000km
- Migration facilitated by wind

- Similarly can FAW migrate from North Africa to Europe

Nagoshi et al., 2017
FAW distribution – current and potential migratory pathway

Map source: CABI factsheet
Fall Armyworm dynamics assessed using the CBFAMFEW-FAMEWS data

Niassy et al., 2020, under review

www.icipe.org
> 90% of farmers in Ethiopia and Kenya, encountered FAW

- Farmer’s estimated crop damage of 32% in Ethiopia and 47% in Kenya (0.8 to 1.0 tonnes/ha)

- In Kenya, 60% of farmers felt pesticides were ineffective, while in Ethiopia 46% felt pesticides to be effective (26% combined sprays with handpicking)
Quantifying the economic impacts of fall armyworm: A case study in Ethiopia

- 1260 maize growing households
- Plot and household level data collected, control strategies, loss data at plot level
- 18 villages

- Reduced maize yield by 12%
- Reduced marketed surplus by 13%
- Increased quantity of insecticides use by 85% (from 0.54 liter per ha to 1 liter per ha)

FAW spread over time and space and impacts in Kenya

• 121 communities
• 121 focus group discussions
• 1,439 farmers (51% Female) participated
• First observed in Western Kenya
• By 2017, FAW had reached most of the Eastern and Coastal areas
• Average yield loss of 32% was estimated for Kenya

Source: Agriculture, Ecosystems & Environment (2020), 292, 106804.
Other yield loss estimates across Africa

- **Ghana** – 26% (Rwomushana et al., 2018)
- **Zambia** – 28% (Kansiime et al., 2018)
- **Kenya** – 32% (De Groot et al., 2020)
- **Ethiopia** – 11.57% (Kassie et al., 2020)
- **Zimbabwe** – 11.57% (Baudron et al. 2019)

FAO estimates – 10 – 20% of maize yield across Africa
Current FAW management actions response

> 60 synthetic pesticides have been promoted across Africa, while only 6 – 7 of these show effectiveness for FAW management and are ecologically safe
Sustainable Fall armyworm IPM strategy for Africa

- Conservation of indigenous and introduced natural enemies
- Effective monitoring for timely action
- Biopesticides and biorationals
- Resilient maize cropping systems such as Push-Pull
- Capacity building on FAW management

- Enhanced productivity and food security ensured
- Safer environments and products
- Better livelihoods
FAW-IPM Africa-specific, science-led, sustainable and integrated management of the fall armyworm
Project objectives

Overall objective is to enhance resilience of smallholder maize growers in eastern Africa through enhanced preparedness and eco-friendly management of fall armyworm (FAW), *Spodoptera frugiperda*, for food and nutritional security.

Specific objective is ‘sustainable management of FAW through the development and scaling out of proven and innovative environmentally-friendly integrated pest management (IPM) approaches.’
Key result areas

- 5 Eastern African countries (Kenya, Uganda, Rwanda, Ethiopia, Tanzania)

- **Result Area 1:** Regional preparedness, early warning and enhanced capacity for timely response with available management options

- **Result Area 2:** An effective and sustainable IPM strategy developed and disseminated

- **Result Area 3:** Dissemination and participatory implementation of FAW-IPM in eastern Africa strengthened

- **Result Area 4:** Capacity in East Africa to research, develop and implement a sustainable IPM enhanced

- **Result Area 5:** Livelihood, environmental and gender impacts along the maize value chain determined and utilized for decision making
Acknowledgement

Donors

EUROPEAN UNION

US AID
FROM THE AMERICAN PEOPLE

FAO
FIAT PANIS

UK aid
from the British people

BBSRC
bioscience for the future

Sida

BILL & MELINDA GATES foundation
Acknowledgement

Donors directly providing financial support to icipe

www.icipe.org
Thank you

International Centre of Insect Physiology and Ecology

P.O. Box 30772-00100, Nairobi, Kenya
Tel: +254 (20) 8632000
E-mail: icipe@icipe.org
Website: www.icipe.org

Support icipe: www.icipe.org/support-icipe

facebook.com/icipe.insects/icipe
twitter.com/icipe
linkedin.com/company/icipe
<table>
<thead>
<tr>
<th>Features</th>
<th>Corn Strain (C)</th>
<th>Rice Strain (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host preference</td>
<td>Maize, Cotton and Sorghum</td>
<td>Rice, Bermuda grass and turfgrass</td>
</tr>
<tr>
<td>Morphology</td>
<td>Similar</td>
<td></td>
</tr>
<tr>
<td>Molecular</td>
<td>Variations at the mitochondrial cytochrome oxidase I gene</td>
<td></td>
</tr>
<tr>
<td>Pesticide efficacy</td>
<td>More susceptible to Carbofuran</td>
<td>More susceptible to Carbaryl and Diazinon</td>
</tr>
<tr>
<td>Multiplication rate</td>
<td>Greater compared to R strain</td>
<td>Lesser compared to C strain</td>
</tr>
<tr>
<td>Mating compatibility</td>
<td>C-Female x R-Male</td>
<td>R-Female x C-Male</td>
</tr>
<tr>
<td>Pheromone</td>
<td>More responsive</td>
<td>Less responsive</td>
</tr>
<tr>
<td>Situation in Africa</td>
<td>Both strains widely distributed</td>
<td></td>
</tr>
</tbody>
</table>

Nagoshi et al., 2007, 2018; Hardke et al., 2015; Srinivasan et al., 2018