

- Enhanced productivity and food security ensured
- Safer environments and products
- Better livelihoods

FAW arrival, spread and emerging impacts at household level

EU FAW IPM project overview

Subramanian Sevgan Principal Scientist, Plant health theme On behalf of the FAW team, *icipe* and partners

EUROPEAN UNION

Spodoptera frugiperda (<u>J.E. Smith</u>, 1797)

Nearctic and Neotropical in origin, identified first in 1797 in Georgia, USA

□ Phaleana frugiperda (until 1852)

□ Laphygma frugiperda (until 1958) □ Commonly referred as grass worm

□ First report on migratory behavior from Florida and Texas (Lubingill, 1928)

□ Named as Fall Armyworm, *Spodoptera frugiperda* in 1958

Host range and economic importance

- Host Range, over 100 plant spp.
- Montezano et al. (2018) 353 host plants
- Cereals: maize, sorghum, wheat
- Fodder grasses: Napier grass
- Vegetables: Kales, Cabbages, pulses

FAW is a threat to:

- Food security
- Maize seed sector
- Export trade
- Livestock feed industry

Global invasion of Fall armyworm

2016

2017

2018

2019

Average yield loss to maize: 10.4 – 45%

Economic Impact : US\$ 1,088 and US\$ 4,661 (CABI, 2018)

Migratory pattern in the Neotropics

- □ Overwintering populations in Texas and Florida
- □ Annual migration northwards
- □ Texas population widespread in South America
- Migratory behavior in South America not widely studied, expected to be endemic
- □ Adults can migrate over 2000km
- Migration facilitated by wind

□ Similarly can FAW migrate from North Africa to Europe

Nagoshi et al., 2017

FAW distribution – current and potential migratory pathway

Map source: CABI factsheet

www.icipe.org

Fall Armyworm dynamics assessed using the CBFAMFEW-FAMEWS data

Farmer's perceptions and management of FAW – Ethiopia and Kenya

- \Box > 90% of farmers in Ethiopia and Kenya, encountered FAW
- □ Farmer's estimated crop damage of 32% in Ethiopia and 47% in Kenya (0.8 to 1.0 tonnes/ha)
- □ In Kenya, 60% of farmers felt pesticides were ineffective, while in Ethiopia 46% felt pesticides to be effective (26% combined sprays with handpicking)

INTERNATIONAL JOURNAL OF PEST MANAGEMENT, 2018 https://doi.org/10.1080/09670874.2017.1423129 Taylor & Francis Taylor & Francis Group

(R) Check for updat

Farmers' knowledge, perceptions, and management practices of the new invasive pest, fall armyworm (Spodoptera frugiperda) in Ethiopia and Kenya

Teshome Kumela^a, Josephine Simiyu^b, Birhanu Sisay^a, Paddy Likhayo^b, Esayas Mendesil^a, Linnet Gohole^c and Tadele Tefera^a

^aInternational Center of Insect Physiology & Ecology (*icipe*), Addis Ababa, Ethiopia; ^bInternational Center of Insect Physiology & Ecology (*icipe*), Nairobi, Kenya; ^cDepartment of Seed, Crop & Horticultural Sciences, University of Eldoret, Eldoret, Kenya

Quantifying the economic impacts of fall armyworm: A case study in Ethiopia

- 1260 maize growing households
- Plot and household level data collected, control strategies, loss data at plot level
- 18 villages
- Reduced maize yield by 12%
 Reduced marketed surplus by 13%
 Increased quantity of insecticides use by 85% (from 0.54 liter per ha to 1 liter per ha)

www.icipe.org

Kassie et al., 2020. European Review of Agricultural Economics (2020). pp. 1-20.

FAW spread over time and space and impacts in Kenya

- 121 communities
- 121 focus group discussions
- 1, 439 farmers (51% Female) participated
- First observed in Western Kenya
- By 2017, FAW had reached most of the Eastern and Coastal areas
- Average yield loss of 32% was estimated for Kenya

Source: <u>Agriculture, Ecosystems & Environment</u> (2020), 292, 106804.

Other yield loss estimates across Africa

Current FAW management actions response

> 60 synthetic pesticides have been
 promoted across Africa, while only 6 – 7
 of these show effectiveness for FAW
 management and are ecologically safe

Sustainable Fall armyworm IPM strategy for Africa

- Enhanced productivity and food security ensured
- Safer environments and products
- Better livelihoods

FAW-IPM Africa-specific, science-led, sustainable and integrated management of the fall armyworm

Project objectives

Overall objective is to enhance resilience of smallholder maize growers in eastern Africa through enhanced preparedness and eco-friendly management of fall armyworm (FAW), *Spodoptera frugiperda,* for food and nutritional security

Specific objective is 'sustainable management of FAW through the development and scaling out of proven and innovative environmentally-friendly integrated pest management (IPM) approaches.

Key result areas

- 5 Eastern African countries (Kenya, Uganda, Rwanda, Ethiopia, Tanzania)
- **Result Area 1:** Regional preparedness, early warning and enhanced capacity for timely response with available management options
- □Result Area 2: An effective and sustainable IPM strategy developed and disseminated
- □Result Area 3: Dissemination and participatory implementation of FAW-IPM in eastern Africa strengthened

□Result Area 4: Capacity in East Africa to research, develop and implement a sustainable IPM enhanced

Result Area 5: *Livelihood, environmental and gender impacts along the maize value chain determined and utilized for decision making*

Acknowledgement

Donors

EUROPEAN UNION

BILL& MELINDA GATES foundation

Acknowledgement

Donors directly providing financial support to icipe

Thank you

International Centre of Insect Physiology and Ecology

P.O. Box 30772-00100, Nairobi, Kenya Tel: +254 (20) 8632000 E-mail: <u>icipe@icipe.org</u> Website: <u>www.icipe.org</u>

Support icipe: www.icipe.org/support-icipe

- f facebook.com/icipe.insects/icipe
- twitter.com/icipe
- in linkedin.com/company/icipe

Strains/haplotypes of Fall Armyworm

Features	Corn Strain (C)	Rice Strain (R)
Host preference	Maize, Cotton and Sorghum	Rice, Bermuda grass and turfgrass
Morphology	Similar	
Molecular	Variations at the mitochondrial cytochrome oxidase I gene	
Pesticide efficacy	More susceptible to Carbofuran	More susceptible to Carbaryl and Diazinon
Multiplication rate	Greater compared to R strain	Lesser compared to C strain
Mating compatibility	C-Female x R-Male Nagoshi et al., 2007, 2018; Hard	R-Female x C-Male ke et al., 2015; Srinivasan et al., 2018
Pheromone	More responsive	Less responsive
Situation in Africa	Both strains widely distributed	

